The Potential of Artificial Neural Network Technique in Daily and Monthly Ambient Air Temperature Prediction
نویسنده
چکیده
Ambient air temperature prediction is of a concern in environment, industry and agriculture. The increase of average temperature results in natural disasters, higher energy consumption, damage to plants and animals and global warming. Ambient air temperature predictions are notoriously complex and stochastic models are not able to learn the non-linear relationships among the considered variables. Artificial Neural Network (ANN) has potential to capture the complex relationships among many factors which contribute to prediction. The aim of this study is to develop ANN for daily and monthly ambient air temperature prediction in Kerman city located in the south east of Iran. The mean, minimum and maximum ambient air temperature during the years 1961-2004 was used as the input parameter in Feed Forward Network and Elman Network. The values of R, MSE and MAE variables in both networks showed that ANN approach is a desirable model in ambient air temperature prediction, while the results of one day ahead mean temperature and one month ahead maximum temperature are more precise using Elman network.
منابع مشابه
Estimation of Monthly Mean Daily Global Solar Radiation in Tabriz Using Empirical Models and Artificial Neural Networks
Precise knowledge ofthe amount of global solar radiation plays an important role in designing solar energy systems. In this study, by using 22-year meteorologicaldata, 19 empirical models were tested for prediction of the monthly mean daily global solar radiation in Tabriz. In addition, various Artificial Neural Network (ANN) models were designed for comparison with empirical models. For this p...
متن کاملEstimating and modeling monthly mean daily global solar radiation on horizontal surfaces using artificial neural networks
In this study, an artificial neural network based model for prediction of solar energy potential in Kerman province in Iran has been developed. Meteorological data of 12 cities for period of 17 years (1997–2013) and solar radiation for five cities around and inside Kerman province from the Iranian Meteorological Office data center were used for the training and testing the network. Meteorologic...
متن کاملPrediction of monthly rainfall using artificial neural network mixture approach, Case Study: Torbat-e Heydariyeh
Rainfall is one of the most important elements of water cycle used in evaluating climate conditions of each region. Long-term forecast of rainfall for arid and semi-arid regions is very important for managing and planning of water resources. To forecast appropriately, accurate data regarding humidity, temperature, pressure, wind speed etc. is required.This article is analytical and its database...
متن کاملDaily Pan Evaporation Estimation Using Artificial Neural Network-based Models
Accurate estimation of evaporation is important for design, planning and operation of water systems. In arid zones where water resources are scarce, the estimation of this loss becomes more interesting in the planning and management of irrigation practices. This paper investigates the ability of artificial neural networks (ANNs) technique to improve the accuracy of daily evaporation estimation....
متن کاملSulfur dioxide AQI modeling by artificial neural network in Tehran between 2007 and 2013
Background: Air pollution and concerns about health impacts have been raised in metropolitan cities like Tehran. Trend and prediction of air pollutants can show the effectiveness of strategies for the management and control of air pollution. Artificial neural network (ANN) technique is widely used as a reliable method for modeling of air pollutants in urban areas. Therefore, the aim of current ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012